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INDENTATION OF A RIGID BODY INTO AN ELASTIC PLATE

UDC 539.3I. I. Argatov

The problem of a punch shaped like an elliptic paraboloid pressed into an elastic plate is stud-
ied under the assumption that the contact region is small. The action of the punch on the
plate is modeled by point forces and moments. The method of joined asymptotic expansions is
used to formulate the problem of one-sided contact for the internal asymptotic representation;
the problem is solved with the use of the results obtained by L. A. Galin. The coordinates of
the center of the elliptic contact region, its dimensions, and the angle of rotation are deter-
mined. The moments which ensure translational indentation of the punch are calculated and
an equation that relates displacements of the punch to the force acting on it is given.

1. Formulation of the Problem. Let a punch shaped like an elliptic paraboloid

Φ(x0;x) = (2R1)−1(x1 − x0
1)2 + (2R2)−1(x2 − x0

2)2 (1.1)

be pressed into an elastic plate Ω with the flexural rigidity D which is fixed along the edge ∂Ω. Here R1 and
R2 are the radii of curvature of the principal normal sections at the vertex of the punch x0 ∈ Ω. We denote
the translational displacement of the punch by δ0.

The deflection of the plate is determined from the solution of the problem (see, e.g., [1])

u(x) > δ0 − Φ(x0;x) =⇒ D∆x∆xu(x) = 0; (1.2)

u(x) = δ0 − Φ(x0;x) =⇒ D∆x∆xu(x) > 0; (1.3)

u(x) > δ0 − Φ(x0;x), x = (x1, x2) ∈ Ω; (1.4)

u(x) = 0, ∂nu(x) = 0, x ∈ ∂Ω. (1.5)

The contact region Σ, where equality (1.3) holds, is unknown a priori. In accordance with the assumed
shape of the punch (1.1), the pressure p(x1, x2) = −D∆x∆xΦ(x0;x) exerted by the punch on the plate is
concentrated on the contact-region contour ∂Σ.

We study problem (1.2)–(1.5) under the assumption that the region Σ is small. Evidently, its dimen-
sions are “controlled” by the parameters δ0, R1, and R2. Denoting the small positive parameter by ε, we
set

R1 = εR∗1, R2 = εR∗2, δ0 = εδ∗0 , (1.6)

where the quantities δ∗0 , R∗1, andR∗2 are comparable with the distance d0 from the point x0 to the boundary ∂Ω.
The above problem with one-sided constraints and related problems have been studied within the

framework of the theory of variational inequalities (see, e.g., [1, 2]). Glowinski, Lions, and Tremolieres [3]
and Kovtunenko [4] proposed numerical algorithms of solution. Nazarov [5] developed asymptotic methods
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to study variational inequalities. Khludnev [6] considered optimal-control problems. Galin [7] obtained an
approximate solution of the problem of a punch (1.1) pressed into a circular plate under the assumption
that plate deflection at a distance from the contact region is described by the solution of the problem of a
plate with a point force applied at its center. Rosenberg [8] and Grigolyuk and Tolkachev [9] studied the
axisymmetric problem. Cherepanov [10] considered the contact problem for a simply supported polygonal
plate.

If the punch vertex does not coincide with the center of the plate, certain moments should be applied
to the punch to ensure its translational displacement. The aim of the present study is to approximate these
moments and generalize the results of [7]. Problem (1.1)–(1.5) is solved by the method of joined asymptotic
expansions [11]. The method outlined in [12] is used to formulate the problem of one-sided contact for the
boundary layer whose solution is given by the formulas of [7]. Campbell and Nazarov [13] applied the method
of joined asymptotic expansions to study vibrations of an elastic plate having a small rigid inclusion with a
specified law of motion.

2. External and Internal Asymptotic Representations. We denote the solution of the problem
of bending of a plate Ω loaded by a point force at the point x0 by Γ(x0;x):

Γ(x0;x) =
1

8πD
|x− x0|2 ln

|x− x0|
r0

+ γ(x0;x). (2.1)

Here r0 is a constant having the dimension of length and

γ(x0;x) = γ(x0;x0)− γ2(x0)(x1 − x0
1) + γ1(x0)(x2 − x0

2)

+
2∑

i,j=1

γij(x0)(xi − x0
i )(xj − x0

j ) +O(|x− x0|3), x→ x0. (2.2)

Remark 2.1. If G(x0;x) is Green’s harmonic function for the Dirichlet problem, then G(x0;x) =
−(2π)−1 ln(|x − x0|/r0) + o(1) as x → x0. In the case of a simply connected region Ω, the parameter r0 is
the internal conformal radius of the region Ω relative to the point x0 (see, e.g., [14]). One can show (see
[14, Problem No. 122]) that r0 > d0. The Green’s biharmonic function (2.1) can be written in the form
Γ(x0;x) = −(4D)−1|x − x0|2G(x0;x) + γ̃(x0;x), where γ̃ is a regular function. We note that the quantity
4
√
πDγ(x0;x0) is interpreted as an internal biharmonic radius.

We write the solutions of the problem of a plate Ω loaded by point moments at the point x0

Γ(1)(x0;x) = − 1
4πD

(x2 − x0
2) ln

|x− x0|
r0

+ γ(1)(x0;x); (2.3)

Γ(2)(x0;x) =
1

4πD
(x1 − x0

1) ln
|x− x0|

r0
+ γ(2)(x0;x). (2.4)

For regular parts of the functions (2.3) and (2.4), the formula

γ(i)(x0;x) = γ(i)(x0;x0) +O(|x− x0|), x→ x0 (i = 1, 2) (2.5)

is valid.
At a distance from the contact region, the action of the punch on the elastic plate is modeled by the

reactions concentrated at the point x0:

v(x) = PΓ(x0;x) +
2∑
i=1

MiΓ(i)(x0;x). (2.6)

As a first approximation, we have Pγ(x0;x0) = δ0; therefore, according to (1.6), we set

P = εP ∗. (2.7)

In the neighborhood of the contact region Σ(ε), we use the “extended” coordinates
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ξ = (ξ1, ξ2), ξi = ε−1(xi − x0
i ). (2.8)

According to (1.2)–(1.4) and (2.8), the internal asymptotic representation of the solution of the initial problem
w(ε; ξ) satisfies the relations

w(ε; ξ) > ε(δ∗0 − Φ∗(ξ)) =⇒ ∆ξ∆ξw(ε; ξ) = 0; (2.9)

w(ε; ξ) = ε(δ∗0 − Φ∗(ξ)) =⇒ ∆ξ∆ξw(ε; ξ) > 0; (2.10)

w(ε; ξ) > ε(δ∗0 − Φ∗(ξ)), ξ ∈ R2; Φ∗(ξ) = (2R∗1)−1ξ2
1 + (2R∗2)−1ξ2

2 . (2.11)

Since the scale is changed, the distance from the punch vertex to the plate edge becomes equal to ε−1d0 and,
hence, for small ε, formulas (2.9) and (2.10) are valid on the entire plane. The discarded boundary conditions
(1.5) are replaced by the asymptotic conditions for w(ε; ξ) as ξ →∞.

Bearing in mind (2.1)–(2.5), (2.7), and (2.8), we obtain the following expansion for the function (2.6):

v(x0 + εξ) = εP ∗
{

(8πD)−1ε2|ξ|2 ln
ε|ξ|
r0

+ γ(x0;x0) + ε[−γ2(x0)ξ1 + γ1(x0)ξ2]

+ ε2
2∑

i,j=1

γij(x0)ξiξj

}
+

2∑
i=1

Miγ
(i)(x0;x0) + ε(4πD)−1(M2ξ1 −M1ξ2) ln

ε|ξ|
r0

+ . . . . (2.12)

Here the omission points denote insignificant (in subsequent calculations) terms. It is noteworthy that as
ε→ 0, one cannot determine a priori the order of the moments Mi. We assume that

Mi = ε2M∗i (i = 1, 2). (2.13)

Below, we show that Mi = O(ε3); therefore, in the derivation of formula (2.12), we ignore terms of the orders
O(ε3|ξ|3) and O(ε3|ξ| ) compared to unity [see, in particular, the braced expression in (2.12)].

With the use of the method of joined asymptotic expansions, relation (2.12) allows one to formulate
the condition for the boundary layer at infinity which we seek in the form

w(ε; ξ) = ε[V ∗(ξ) +W (ε; ξ)]; (2.14)

V ∗(ξ) = P ∗
{
γ(x0;x0) + ε[−γ2(x0)ξ1 + γ1(x0)ξ2] + ε2

2∑
i,j=1

γij(x0)ξiξj

}
+ ε

2∑
i=1

M∗i γ
(i)(x0;x0). (2.15)

As |ξ| → ∞, (2.12) yields the following representation for W :

W (ε; ξ) = ε2
[ P ∗

8πD
|ξ|2 ln

ε|ξ|
r0

+
1

4πD
(M∗2 ξ1 −M∗1 ξ2) ln

ε|ξ|
r0

]
+ . . . . (2.16)

Relations (2.9)–(2.11) and (2.14)–(2.16) form a model problem of one-sided contact for an infinite
plate. We solve this problem using the results of [7].

3. Determination of the Moments Acting on the Punch. Substituting (2.14) into (2.9)–(2.11),
we infer that the function W given by (2.16) satisfies the relations

W (ε; ξ) > δ∗0 − Φ∗(ξ)− V ∗(ξ) =⇒ ∆ξ∆ξW (ε; ξ) = 0; (3.1)

W (ε; ξ) = δ∗0 − Φ∗(ξ)− V ∗(ξ) =⇒ ∆ξ∆ξW (ε; ξ) > 0; (3.2)

W (ε; ξ) > δ∗0 − Φ∗(ξ)− V ∗(ξ), ξ ∈ R2. (3.3)

We assume that γ12(x0) = γ21(x0) = 0. Separating the complete squares, we obtain

δ∗0 − Φ∗(ξ)− V ∗(ξ) = O∗0 −
2∑
i=1

[ 1
2R∗i

+ ε2P ∗γii(x0)
]
(ξi − ξci )2; (3.4)
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O∗0 = δ∗0 − P ∗γ(x0;x0)− ε
2∑
i=1

M∗i γ
(i)(x0;x0) +

2∑
i=1

(2R∗i )
−1(ξci )

2,

(3.5)

ξc1 = εP ∗R∗1γ2(x0), ξc2 = −εP ∗R∗2γ1(x0).

In (3.4), terms of the order O(ε3) are discarded, since this corresponds to the accuracy of formulas (2.12) and
(2.15).

In this stage, we determine the moments M∗i . We note that the behavior of W at infinity is determined
by the first, rapidly increasing term in square brackets in (2.16). Hence, according to (3.4), the center of the
contact region shifts to the point with coordinates (3.5). Imposing the following constraint on the function W

W (ε; ξ) =
ε2P ∗

8πD
|ξ − ξc|2 ln

|ξ − ξc|
r0/ε

+O
(

ln
|ξ − ξc|
r0/ε

)
, |ξ − ξc| → ∞, (3.6)

we obtain the equalities

M∗1 = P ∗ξc2, M∗2 = −P ∗ξc1. (3.7)

Bearing in mind (3.5), (3.7), and (2.13), we infer that Mi is of the order O(ε3). Finally, reverting to the real
scale and using (1.6), (2.7), and (2.8), we find

xc1 = x0
1 + PR1γ2(x0), xc2 = x0

2 − PR2γ1(x0). (3.8)

We use the results of [7] to construct the solution of the model problem (3.1)–(3.3) and (3.6). We
introduce the complex variable z = ξ1 − ξc1 + i(ξ2 − ξc2). Since a second-degree polynomial enters the right
side of (3.4), the contact region Σ∗ is elliptic and its complement to the enhanced complex plane is the image
of the exterior of a unit circle for conformal mapping

z = ω(ζ), ω(ζ) = c∗(ζ +mζ−1); (3.9)

c∗ =
r0

ε
exp

{
− 4πD
ε2P ∗

R∗1 +R∗2
2R∗1R

∗
2

− 4πD[γ11(x0) + γ22(x0)]− 1
}

; (3.10)

m =
8πD
ε2P ∗

R∗1 −R∗2
2R∗1R

∗
2

+ 8πD[γ22(x0)− γ11(x0)]. (3.11)

Using the Goursat formula, we write the internal asymptotic representation (2.14) in the form

w(ε; ξ) = ε(δ∗0 − Φ∗(ξ)) + εRe [z̄ϕ(z) + χ(z)]. (3.12)

The derivatives of the complex potentials are given by [7]

ϕ′[ω(ζ)] =
ε2P ∗

8πD
ln ζ, χ′′[ω(ζ)] = −ε

2P ∗

8πD
1 +mζ2

ζ2 −m
. (3.13)

With allowance for (3.9) and (3.13), the equality

ϕ[ω(ζ)] =
∫
ϕ′[ω(ζ)]

dω(ζ)
dζ

dζ

becomes

ϕ[ω(ζ)] =
ε2P ∗

8πD
c∗
[(
ζ +

m

ζ

)
ln ζ − ζ +

m

ζ

]
. (3.14)

The second formula (3.13) can be integrated twice to give

χ[ω(ζ)] =
ε2P ∗

8πD
(c∗)2

[
(1 +m2) ln ζ − m

2

(
ζ2 − 1

ζ2

)]
+ C. (3.15)

The integration constant in (3.15) is determined from the condition that the second term in (3.12) vanishes
at the contour ∂Σ∗ of the contact region (for |ζ| = 1) and has the form C = ε2P ∗(8πD)−1(c∗)2(1−m2).
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4. Force–Displacement Relation for the Punch. We substitute (3.14) and (3.15) into (3.12) and
study the behavior of w(ε; ξ) as |ξ| → ∞. Simple calculations lead to the relation

w(ε; ξ) = εδ∗0 − ε
( ξ2

1

2R∗1
+

ξ2
2

2R∗2

)
+
ε3P ∗

8πD
|ξ − ξc|2 ln

|ξ − ξc|
r0/ε

+ ε
2∑
i=1

( 1
2R∗i

+ ε2P ∗γii(x0)
)

(ξi − ξci )2 +
ε3P ∗

8πD
(c∗)2(1 +m2) ln

|ξ − ξc|
c∗

+
ε3P ∗

8πD
(c∗)2m

(ξ1 − ξc1)2 − (ξ2 − ξc2)2

|ξ − ξc|2
+
ε3P ∗

8πD
(c∗)2

(
1− m2

2

)
+O(|ξ|−1), |ξ| → ∞. (4.1)

We compare the expansion (4.1) with (2.12). First, within the framework of the method of joined asymptotic
expansions, the presence of the term ln (|ξ−ξc|/c∗) in (4.1) shows that the external asymptotic representation
(2.6) must be refined by a corresponding singular solution. However, according to (3.10), the quantity

εc∗/r0 decreases exponentially as ε → 0. At the same time, since |ξ − ξc|2 = |ξ|2 − 2
2∑
i=1

ξiξ
c
i + |ξc|2, the

expansion of the third term on the right side of (4.1) contains the term ε3P ∗(8πD)−1ε2(P ∗)2[(R∗1)2γ2(x0)2

+ (R∗2)2γ1(x0)2] ln (ε|ξ|/r0).
Thus, the above singular solution of the biharmonic equation with a logarithmic singularity has a

coefficient of the order O(ε5) and, hence, has no effect on the expansion (2.12).
Second, in the range of joining

√
ε d0/2 6 |x−x0| 6

√
ε d0 [or d0/(2

√
ε) 6 |ξ| 6 d0/

√
ε in the extended

coordinates], the relation v(x)− w(ε; ε−1(x− x0)) = O(ε2√ε) is satisfied as ε→ 0 provided the condition

εP ∗γ(x0;x0) + ε2
2∑
i=1

M∗i γ
(i)(x0;x0) = εδ∗0 + ε

2∑
i=1

1
2R∗i

(ξci )
2] (4.2)

holds. With allowance for (1.6), (2.7), (3.5), and (3.7), Eq. (4.2) relating the force acting on the punch P to
its displacement δ0 finally becomes

Pγ(x0;x0)− P 2k(R1, R2;x0) = δ0,
(4.3)

k(R1, R2;x0) =
2∑
i=1

R3−iγi(x0)
[
γ(i)(x0;x0) +

1
2
γi(x0)

]
.

A relation inverse to Eq. (4.3) can be written with the same accuracy in the form

P =
δ0

γ(x0;x0)
+

δ2
0

γ(x0;x0)3
k(R1, R2;x0). (4.4)

If γ12(x0) = γ21(x0) 6= 0, formulas (3.5), (3.8) and (3.10), (3.11) for the coordinates of the contact
region and its dimensions, respectively, expressions (3.7) for the moments acting on the punch, and the
force–displacement relations (4.2)–(4.4) are valid. In this case, the elliptic contact region is rotated about the

coordinate axes through a certain angle ϕ. If R∗1 = R∗2, ϕ is determined by the quadratic form
2∑

i,j=1

γij(x0)ξiξj .

If, for example, R∗1 > R∗2, we obtain

ϕ = −ε2 2R∗1R
∗
2

R∗1 −R∗2
P ∗γ12(x0) (4.5)

with accuracy to terms of the order ε3 [formula (3.4) was obtained with the same accuracy].
By virtue of (2.8), (3.10), and (3.11), the elliptic contact spot has the semiaxes c(1 +m) and c(1−m)

in the real coordinates. Moreover,
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c = r0 exp
{
− 4πD

P

R1 +R2

2R1R2
− 4πD[γ11(x0) + γ22(x0)]− 1

}
, (4.6)

m =
8πD
P

R1 −R2

2R1R2
+ 8πD[γ22(x0)− γ11(x0)]. (4.7)

Formulas (4.6) and (4.7) generalize the results obtained by Galin [7]. For a clamped circular plate, we have
γ11(0) = γ22(0) = −(16πD)−1, and relations (4.6) and (4.7) coincide with the formulas of [7].

It should be noted that the clamped case is considered here only for simplicity. For example, for a
simply supported plate, we have γ11(0) = γ22(0) = −(16πD)−1(3 + ν)(1 + ν)−1, where ν is Poisson’s ratio.

Conclusions. Further complication of the asymptotic representations (see Sec. 4) leads to the fact
that the shape of the region becomes nonelliptic. Asymptotic formulas for the contact region were studied
in [5, 15].

It is noteworthy that in the case where R∗1 6= R∗2, the quantity m [see formula (3.11)] is not limited
as ε decreases; however, by its geometrical meaning, its absolute value must not exceed unity. This paradox
can be explained by the fact that as the difference between the radii of curvature R1 and R2 increases, the
elongated narrow elliptic contact region becomes a segment. It is noteworthy that the problem of an infinite
elastic plate clamped along a line was discussed in [9, § 8.7].

It follows from formulas (3.8) and (4.5)–(4.7) that the parameters of the contact region depend on the
dimensions and shape of the plate and the position of the punch center.

The author is grateful to S. A. Nazarov for useful discussions.
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